Acta Cryst. (1980). A36, 416-420

Über den Zusammenhang zwischen der mittleren quadratischen Auslenkung $\langle u^2 \rangle$ der Atome im Kristallgitter und der spezifischen Wärme c_{i} , für Zink

VON ELISABETH ROSSMANITH

Mineralogisch-Petrographisches Institut der Universität Hamburg, 2000 Hamburg 13, Grindelallee 48, Bundesrepublik Deutschland

(Eingegangen am 24. September 1979; angenommen am 14. November 1979)

Abstract

The mean-square displacement of atoms in the Zn lattice, $\langle u^2 \rangle$, and the specific heat, c_v , have been calculated as functions of temperature with the help of the Debye frequency spectrum as well as with the help of the lattice vibrational spectrum calculated from inelastic neutron intensity data. The results are compared with experimental values and with the results of calculations of $\langle u^2 \rangle$ using the frequency spectrum derived from thermodynamical data.

Einleitung

Für Kristalle, die nur aus einer Atomsorte bestehen, führen gitterdynamische Betrachtungen für den Mittelwert der quadratischen Auslenkung der Atome im Gitter $\langle u^2 \rangle$ in der harmonischen Näherung zu (Blackman, 1955; Born & Huang, 1954; Willis & Pryor, 1975):

$$\langle u^2 \rangle = \frac{\frac{1}{m} \int \left(\frac{\hbar \omega}{2} + \frac{\hbar \omega}{e^{\hbar \omega/kT} - 1} \right) \frac{g(\omega)}{\omega^2} d\omega}{\int g(\omega) d\omega} .$$
(1)

Für die spezifische Wärme bei konstantem Volumen c_v erhält man in der harmonischen Näherung:

$$c_v = 3kN \int \frac{(\hbar\omega/kT)^2 e^{\hbar\omega/kT}}{(e^{\hbar\omega/kT} - 1)^2} g(\omega) \,\mathrm{d}\omega / \int g(\omega) \,\mathrm{d}\omega. \quad (2)$$

Hierbei bedeuten *m* die Atommasse, \hbar das Plancksche Wirkungsquantum geteilt durch 2π , *k* die Boltzmannkonstante, *T* die absolute Temperatur und *N* die Loschmidtsche Zahl.

Integriert wird über die Frequenz ω . $g(\omega)$ ist das Frequenzspektrum der gequantelten Atomschwingungen im Kristall. Setzt man in (1) und (2) für $g(\omega)$

0567-7394/80/030416-05\$01.00

das Debyesche Frequenzspektrum

$$g(\omega) = \begin{cases} 9N\omega^2/\omega_D^3 & \text{für } \omega \le \omega_D \\ 0 & \text{für } \omega > \omega_D \end{cases}$$

ein, so erhält man für $\langle u^2 \rangle$ und c_v , mit $\Theta_D = \hbar \omega_D / k$ die Debyeschen Näherungen.

$$\langle u^2 \rangle = \frac{3\hbar T}{mk\Theta_D^2} \left\{ \frac{T}{\Theta_D} \int_0^{\Theta_D/T} \frac{x}{e^x - 1} \, \mathrm{d}x + \frac{1}{4} \frac{\Theta}{T} \right\}, \quad (3)$$
$$c_v = 9Nk \left(\frac{T}{\Theta_D}\right)^3 \int_0^{\Theta_D/T} \frac{x^4 e^x}{(e^x - 1)^2} \, \mathrm{d}x. \quad (4)$$

Die Debye-Temperatur Θ_D , auch charakteristische Temperatur genannt, ist nach der Debyeschen Theorie eine Materialkonstante, die der maximalen Gitterschwingungsfrequenz ω_D proportional ist. Danach müsste man, wenn man die Debye-Temperatur z.B. aus dem experimentell bestimmten c_v errechnet hat, $\langle u^2 \rangle$

Fig. 1. Frequenzspektren für Zink und Gewichtsfunktionen. Kurve 1: Frequenzspektrum nach Young & Koppel (1964); 2: Debye Spektrum; 3: W(u) für T = 100, 200 und 300 K; 4: $W(c_v)$ für T = 100, 200 und 300 K.

© 1980 International Union of Crystallography

nach (3) für den gesamten Temperaturebereich berechnen können.

Tatsächlich ist dies aber nicht möglich, da die Debye-Temperatur, wie die Bestimmung von Θ_D aus c_v bei verschiedenen Temperaturen ergibt, nicht konstant, sondern eine Funktion der Temperatur ist. Ausserdem erhält man verschiedene Werte für Θ_D , je nachdem, ob man sie aus c_v oder $\langle u^2 \rangle$ bestimmt.

Die Ursache dafür wird ersichtlich, wenn man das Debye-Spektrum mit dem tatsächlichen Frequenzspektrum vergleicht. In Fig. 1 sehen wir das von Young & Koppel (1964) berechnete Frequenzspektrum für Zink. Ausserdem wurde das Debyesche Spektrum $(9N/\omega_D^3)\omega^2$ mit der $\Theta_D = 206,7$ K entsprechenden Grenzfrequenz eingezeichnet. Dieser Θ_D Wert wurde aus $\langle u^2 \rangle$ bei T = 298 K bestimmt (Rossmanith, 1979).

Ebenfalls in Fig. 1 dargestellt sind die 'Gewichtsfunktionen' W(u) und $W(c_v)$ für T = 100, 200 und 300 K. Die Gewichtsfunktionen stellen die Funktionen dar, mit denen $g(\omega)$ in (1) und (2) unter dem Integral multipliziert wird.

$$W(u) = (\hbar/\omega)[\frac{1}{2} + 1/(e^{\hbar\omega/kT} - 1)],$$

$$W(c_u) = (\hbar\omega/kT)^2 e^{\hbar\omega/kT}/(e^{\hbar\omega/kT} - 1)^2.$$

Man sieht sofort (Herbstein, 1960), dass die verschiedenen Teile des Frequenzspektrums bei der Berechnung von $\langle u^2 \rangle$ bzw. c_v verschieden gewichtet werden.

Die Berechnung von $\langle u^2 \rangle$ und c_v in der Debyeschen Näherung bedeutet also ein Anpassen des gewichteten Debye-Spektrums an das gewichtete tatsächliche Spektrum. Es ist daher nicht verwunderlich, dass sich die aus den beiden Grössen $\langle u^2 \rangle$ und c_v ermittelten Grenzfrequenzen und damit Debye-Temperaturen unterscheiden.

Auch die Nichtkonstanz der Debye-Temperatur für verschiedene Temperaturen wird aus Fig. 1 verständlich. Die Gewichtsfunktionen W(u) und $W(c_v)$ ändern sich mit der Temperatur und damit ändern sich auch die Frequenzbereiche des tatsächlichen und des Debye-Spektrums, die aneinander angepasst werden müssen.

Berechnung von $\langle u^2 \rangle$ und c_v mit dem Debye-Frequenzspektrum

Die Debye-Temperatur des Zink

Passt man die mit (3) und (4) berechneten $\langle u^2 \rangle$ und c_v Werte für verschiedene Temperaturen an gemessene $\langle u^2 \rangle$ bzw. c_v Werte an, so erhält man Θ_D als Funktion der Temperatur.

Die Kurve 5 in Fig. 2 zeigt $\Theta_D^M(T)$, die nach (3) aus von Skelton & Katz (1968) gemessenen $\langle u^2 \rangle$ Werten berechnete Temperaturabhängigkeit der Debye-Tem-

peratur. Kurven 1, 2 und 3 stellen die Temperaturabhängigkeit der aus c_v bestimmten Debye-Temperatur $\Theta_{D^v}^c$ dar. Kurve 1 gibt die $\Theta_{D^v}^c$ Werte von Eichenauer & Schulze (1959) wieder.

Zur Umrechnung der von ihnen gemessenen spezifischen Wärme bei konstantem Druck, c_p , in c_v , verwendeten Eichenauer & Schulze (1959) die Beziehung

$$c_{p}-c_{v}=T\beta^{2}v/\chi$$

 $(\beta = \text{kubischer Ausdehnungskoeffizient}, \chi = \text{Kompressibilitätskoeffizient}, v = \text{Volumen}$). Dieses c_v benutzen Eichenauer & Schulze (1959) zur Berechnung von $\Theta_{C^v}^c$.

Kurve 2 in Fig. 2 erhält man, wenn man die Debye-Temperatur aus c_v^{korr} , d.h. nach Abzug des elektronischen Anteils an der spezifischen Wärme, $c_v^{\text{korr}} = c_v - c_v^{\text{el}}(c_v^{\text{el}} = 0.653T \text{ mJ/mol})$, berechnet.

Barron & Munn (1967*a*) erhielten c_v mit Hilfe der Beziehung

$$c_{p}/c_{v} = 1 + T(2\alpha_{\perp} \gamma_{\perp} + \alpha_{\parallel} \gamma_{\parallel})$$

 $(\alpha_{\perp}, \alpha_{\parallel}, \gamma_{\perp}, \gamma_{\parallel} =$ thermischer Ausdehnungskoeffizient bzw. Grüneisenparameter \perp und \parallel zur hexagonalen Achse) aus den von Eichenauer & Schulze (1959) gemessenen c_p Werten. Nach Korrektur für den Elektronenanteil an der spezifischen Wärme, errechneten sie Kurve 3 für die Temperaturabhängigkeit von $\mathcal{O}_{D^*}^{c_v}$. Ältere, in der Literatur angegebene, aus der spezifischen Wärme bestimmte \mathcal{O}_D Werte können nicht zum Vergleich herangezogen werden, da grossteils keine Angaben über die Umrechnung von c_p in c_v und

über die Korrektur des Elektronen-Anteils an der spezifischen Wärme vorliegen und meist auch nicht bekannt ist, bei welcher Temperatur Θ_D bestimmt worden ist.

Wie empfindlich aber der Wert von Θ_D gegenüber kleinen Änderungen von c_v im höheren Temperaturbereich ist, zeigt der Vergleich der Kurven 1, 2 und 3 in Fig. 2.

Wie in der Einleitung dargelegt (Fig. 1), zeigt Fig. 2 deutlich, dass die Debye-Temperaturen, die aus $\langle u^2 \rangle$ bzw. c_v bestimmt werden, sich nicht nur unterscheiden, sondern auch unterschiedliches Temperaturverhalten zeigen.

Berechnung von $\langle u^2 \rangle$ und c_v mit dem Frequenzspektrum $g(\omega)$ von Zink

Young & Koppel (1964) haben die aus inelastischer Neutronenstreuung ermittelten Dispersionsrelationen und Kraftkonstanten für Zink von Borgonovi, Caglioti & Antal (1963) benutzt, um das Frequenzspektrum $g(\omega)$ zu berechnen.

Da die Funktion $g(\omega)$ nicht analytisch sondern nur als Kurve in der Abbildung 5 der Arbeit von Young & Koppel (1964) vorliegt, wurden aus dieser Abbildung für 80 äquidistante Stützpunkte ω_n die zugehörigen $g(\omega_n)$ abgelesen. Weitere 10 Zwischenwerte für $g(\omega)$ zwischen je zwei Stützpunkten wurden durch lineare Interpolation bestimmt. Diese $g(\omega_n)$ Werte wurden auch zur Darstellung des Frequenzspektrums in Fig. 1 benutzt.

Ersetzt man in den Gleichungen (1) und (2) die Integrale durch Summen, so kann man schliesslich $\langle u^2(T) \rangle$ aus

$$\left\langle u^{2}(T)\right\rangle = \sum_{n=0}^{800} W(u)_{\omega_{n}} g(\omega_{n}) \ m \Big/ \sum_{n=0}^{800} g(\omega_{n}) \quad (5)$$

und $c_v(T)$ aus

$$c_{v} = 3kN \sum_{n=0}^{800} W(c_{v})_{\omega_{n}} g(\omega_{n}) / \sum_{n=0}^{800} g(\omega_{n})$$
(6)

berechnen.

Diskussion der Ergebnisse

In Fig. 3 und 4 sind die Ergebnisse der Berechnungen von c_v und $\langle u^2 \rangle$ zusammengefasst.

Die experimentellen Werte für c_v in Fig. 3 sinde die von Eichenauer & Schulze (1959) gemessenen und um $c_v^{\rm el}$ verminderten Werte für die spezifische Wärme für Zink. Da die Differenz c_v zwischen den experimentellen Werten c_v^{exp} und den berechneten c_v^{theor} für die Kurven 2 und 4 zu klein sind, um in Fig. 3(*a*) deutlich darstellbar zu sein, wurde $\Delta c_v = c_v^{\text{theor}} - c_v^{\text{exp}}$ in Fig. 3(*b*) gegen die Temperatur aufgetragen.

Von den, nach der Debye-Theorie [Gleichung (4)] für $\Theta_D^{c_v}$ von 190 bis 285 K in 1 K Schritten verechneten c_v-T Kurven, wurden 3 (Kurve 1, 2 und 3) in die Fig. 3 aufgenommen, um einen Vergleich mit den Ergebnissen der Berechnung von c_v nach (6) zu ermöglichen. Als Mass für die Güte der Übereinstimmung zwischen Experiment und Theorie wurde für alle c_v-T Kurven

$$R = (\sum \Delta c_v^2 / \sum c_v^{\exp 2})^{1/2}$$

berechnet. Kurve 2 stellt die beste Übereinstimmung in der Debyeschen Näherung dar (R = 0,018). Die Kurven 1 und 3 sind Beispiele für gute Übereinstimmung zwischen Experiment und Theorie für niedrige (T = 20 K) bzw. Zimmertemperatur (T = 300 K). Kurve 4 in Fig. 3(b) stellt das Ergebnis der Berechnung von c_v nach (6) dar. Die Übereinstimmung mit den experimentellen Werten ist über dem gesamten betrachteten Temperaturbereich sehr gut (R = 0,011).

 Δc_v ist am grössten für Temperaturen zwischen 20 und 110 K. Für diesen Temperaturbereich finden wir in Fig. 2 für $\Theta_D^{e_v}$ (Kurven 1, 2 und 3) ein Maximum, dass sich mit keiner einfachen Theorie erklären lässt und daher von Barron & Munn (1967*a*) als Folge systematischer Fehler bei der c_v Messung in diesem Bereich angesehen wird. Kurve 4 in Fig. 2 stellt $\Theta_D^{e_v}$ dar, das dem nach (6) mit Hilfe von $g(\omega)$ berechneten c_v entspricht. Dieser Kurvenverlauf stellt das Temperaturverhalten von $\Theta_D^{e_v}$ dar, das man theoretisch erwartet und auch für andere Substanzen gefunden hat.

Fig. 3. (a) c_v als Funktion von T. (b) Δc_v als Funktion von T. Kurve 1: c_v bzw. Δc_v berechnet nach (4) mit $\Theta = 206$ K; R = 0,043; 2: Δc_v berechnet nach (4) mit $\Theta = 230$ K; R = 0,018; 3: c_v bzw. Δc_v berechnet nach (4) mit $\Theta = 254$ K; R = 0,042; 4: c_v berechnet nach (5); R = 0,011; O: experimentelle c_v Werte (Fehler <0,2%).

Die Differenz Δc_v für T > 240 K (Fig. 3b, Kurve 4) könnte auf die möglicherweise ungenaue $c_p - c_v$ Umrechnung und auf eine fehlerhafte Korrektur der spezifischen Wärme für den Elektronenanteil zurückzuführen sein, da die verwendete Korrektur c_v^{el} für tiefe Temperaturen gilt (Barron & Munn, 1967a).

In Fig. 4 sind die experimentellen Werte für die $\langle u^2 \rangle$ der Arbeit von Skelton & Katz (1968) entnommen. Die Kurven 1, 2 und 3 geben die Berechnung von $\langle u^2 \rangle$ nach der Debyeschen Näherung [Gleichung (3)] für Θ_D^m = 200, 230 und 206,7 K wieder. Kurve 5 stellt das Ergebnis der Berechnung nach (5) dar.

Ebenfalls eingezeichnet sind die $\langle u^2 \rangle$ Werte, die Barron & Munn (1967*a*,*b*) aus thermodynamischen Daten nach der in den Arbeiten von Salter (1965), Barron, Berg & Morrison (1957) und Barron, Leadbetter, Morrison & Salter (1966) beschriebenen Methode berechnet haben.

Diese Methode ergibt, wie auch die Berechnung nach (5), $\langle u^2 \rangle$ in der harmonischen Näherung. Um für den anharmonischen Anteil an der Gitterschwingung, durch den ja die Wärmeausdehnung des Kristalls bewirkt wird, zu korrigieren, benutzen Barron & Munn (1967b) folgendes Verfahren.

Nach (3) berechnen sie für den Temperaturbereich von 0 bis 300 K aus $\langle u^2(T) \rangle$ die zugehörigen Debye-Temperaturen. Dehnt sich der Kristall aus, so werden die Atomabstände grösser, die Bindungskräfte und damit die Schwingungsfrequenz kleiner. In der

Fig. 4. Die mittlere quadratische Auslenkung der Zinkatome als Funktion der Temperatur. Kurve 1: berechnet nach (3) mit $\Theta =$ 200 K; 2: berechnet nach (3) mit $\Theta =$ 230 K; 3: berechnet nach (3) mit $\Theta =$ 206,7 K; 4a: nach Barron & Munn (1967b), ohne Korrektur für Wärmeausdehnung; 4b: nach Barron & Munn (1967b), mit Korrektur für Wärmeausdehnung; 5: diese Arbeit, berechnet mit (6), ohne Korrektur für Wärmeausdehnung; Θ : diese Arbeit, berechnet mit (6), mit Korrektur für Wärmeausdehnung; O: experimentelle Werte nach Skelton & Katz (1968).

Debyeschen Näherung bedeutet das, dass auch die Debye-Temperatur, die ja der Grenzfrequenz proportional ist, mit steigender Temperatur sinkt.

Barron & Munn (1967b) korrigieren nun die den $\langle u^2 \rangle$ Werten entsprechenden Θ_D Werte für diesen Ausdehnungseffekt mit Hilfe der Beziehung (quasi-harmonische Näherung)

$$\Theta_D^{\text{Korr}}/\Theta_D = (a_0/a_T)^{2\gamma \perp (-2)} (c_0/c_T)^{\gamma \parallel (-2)}.$$

 a_0 , a_T , c_0 und c_T sind die Gitterkonstanten bei 0 K bzw. der Temperatur T und $\gamma_{\perp}(-2)$ und $\gamma_{\parallel}(-2)$ sind Grüneisenparameter, die in Barron & Munn (1967*a*) gegeben sind. Aus diesen korrigierten Θ_D Werten berechneten sie wieder nach (3) die zugehörigen Werte für die mittlere quadratische Auslenkung der Zn Atome $\langle u^2 \rangle_{korr}$. Die so korrigierten $\langle u^2 \rangle$ Werte sind als Kurve 4b ebenfalls in Fig. 4 eingezeichnet.

Die verblebende Differenz zwischen experimentellen und theoretischen Werten (Kurve 4b) führen Skelton & Katz (1968) auf zusätzliche anharmonische Gitterschwingungseffekte (*constant-volume anharmonic effects*) zurück, die durch die Korrektur für die Wärmeausdehnung nicht ausreichend beschrieben werden.

Diese Deutung wird durch Arbeiten von Merisalo & Larsen (1977, 1979) unterstützt, die aus der Analyse elastischer thermischer Neutronenstreuintensitätsdaten den anharmonischen Anteil an der Gitterschwingung für T = 300 K zu bestimmen suchen.

In Tabelle 1 sind ihre Ergebnisse zusammen mit dem experimentellen Wert für 300 K von Skelton & Katz (1968) und dem in der quasiharmonischen Näherung berechneten Wert von Barron & Munn (1967b) aufgeführt.

Das Ergebnis des Fits ihrer Neutronenintensitätswerte in harmonischer Näherung sehen wir in der vorletzten Zeile der Tabelle 1. In der letzten Zeile ist der Wert für $\langle u^2 \rangle$ angegeben, der sich aus dem harmonischen und dem anharmonischen Anteil an der Gitterschwingung zusammensetzt. Bei der Bestimmung des anharmonischen Anteils wurde für den harmonischen Anteil der von Barron & Munn (1967b) berechnete, für die Wärmeausdehnung korrigierte $\langle u^2 \rangle$ Wert eingesetzt und beim Anpassen festgehalten.

Beide Näherungen, die harmonische, wie auch die anharmonische führen zu gleich guter Übereinstimmung mit dem Wert von Skelton & Katz

Tabelle 1. Vergleich theoretischer und experimenteller Werte von $\langle u^2 \rangle$ bei T = 300 K

$\left< u^2 \right> ({\rm \AA}^2)$	Autor
0,0149 (8)	Barron & Munn (1967a,b)
0,0161 (5)	Skelton & Katz (1968)
0,0162 (4)	Merisalo & Larsen (1977), harmonischer Fit
0,0162 (4)	Merisalo & Larsen (1977), anharmonischer Fit

(1968). Darüber hinaus sind der harmonische und der anharmonische Anteil an der Gitterschwingung so stark korreliert, dass so manche Kombination dieser beiden Anteile zu gleich guten Ergebnissen führt.

Ausserdem ist zu bedenken, dass das von Merisalo & Larsen (1977) benutzte $\langle u^2 \rangle$ von Barron & Munn (1967b) in der quasiharmonischen Näherung berechnet ist, d.h. Anharmonizität ist insofern schon berücksichtigt, als sie die Ausdehnung des Kristalls bewirkt.

Die nach (5) in der harmonischen Näherung berechneten Werte für $\langle u^2 \rangle$ liegen für T > 100 K deutlich unter den experimentell bestimmten Werten (Fig. 4, Kurve 5). Daher wurde für T > 100 K die mittlere quadratische Auslenkung der Atome nach der Methode von Barron & Munn (1967b) für die Volumsausdehnung des Kristalls bei Temperaturerhöhung korrigiert.

Die Übereinstimmung der so korrigierten $\langle u^2 \rangle$ Werte (\bullet in Fig. 4) mit den experimentellen Werten ist sehr gut. Es scheint also, dass zumindest in dem betrachteten Temperaturbereich zwischen 10 und 300 K die quasiharmonische Theorie für Zink zu befriedigenden Ergebnissen führt.

Frau S. Mertig möchte ich für die Hilfe bei der Durchführung meiner Rechenprogramme und Frau B. Cornelisen für die Ausführung der Abbildungen danken.

Literatur

- BARRON, T. H. K., BERG, W. T. & MORRISON, J. A. (1957). Proc. R. Soc. London Ser. A, **242**, 478–492.
- BARRON, T. H. K., LEADBETTER, A. J., MORRISON, J. A. & SALTER, L. S. (1966). Acta Cryst. 20, 125–131.
- BARRON, T. H. K. & MUNN, R. W. (1967a). Philos. Mag. 15, 85–103.
- BARRON, T. H. K. & MUNN, R. W. (1967b). Acta Cryst. 22, 170–173.
- BLACKMAN, M. (1955). Handbuch der Physik, Kristallphysik I, pp. 325–382. Berlin, Göttingen, Heidelberg: Springer-Verlag.
- BORGONOVI, G., CAGLIOTI, G. & ANTAL, J. J. (1963). Phys. Rev. 132, 2, 683-688.
- BORN, M. & HUANG, K. (1954). Dynamical Theory of Crystal Lattices. Oxford: Univ. Press.
- EICHENAUER, W. & SCHULZE, M. (1959). Z. Naturforsch. Teil A, 14, 28-32.
- HERBSTEIN, F. H. (1960). Adv. Phys. 10, 313-355.
- MERISALO, M. & LARSEN, F. K. (1977). Acta Cryst. A33, 351–354.
- MERISALO, M. & LARSEN, F. K., (1979). Acta Cryst. A35, 325–327.
- ROSSMANITH, E. (1979). Acta Cryst. A35, 243–245.
- SALTER, L. S. (1965). Adv. Phys. 14, 1-37.
- SKELTON, E. F. & KATZ, J. K. (1968). Phys. Rev. 171, 3, 801–808.
- WILLIS, B. T. M. & PRYOR, A. W. (1975). Thermal Vibrations in Crystallography. Cambridge Univ. Press.
- YOUNG, J. A. & KOPPEL, J. U. (1964). *Phys. Rev.* 134, 6A, A1476–A1479.

Acta Cryst. (1980). A36, 420-428

Morphologie Théorique du Composé Al₃Ni et Comparaison avec les Formes Observées

PAR D. TASSONI

TALLER, Calle Monsinor Granadillo 102-80, Valencia, Venezuela

ET J. P. RIQUET ET F. DURAND

Laboratoire de Thermodynamique et Physico-Chimie Métallurgiques associé au CNRS (LA 29), ENSEEG, Domaine Universitaire BP 44, 38401 Saint Martin d'Hères, France

(Reçu le 27 mars 1979, accepté le 19 novembre 1979)

Abstract

The theoretical crystal morphology of the Al_3Ni intermetallic compound has been deduced from energy calculations. 14 directions of atomic periodic bond chains have been defined, using the Hartman method, from which 11 facet orientations have been determined. For each of them a computer simulation has given the relative potential energy of the atoms at the different sites on the surface, the corresponding energy of 0567-7394/80/030420-09\$01.00 fixing and hence the attachment order of the atoms. The theoretical morphology of Al_3Ni is shown to be made from planes {110}, {101}, {101}, {020} and {002}. The first four plane directions have been observed on dendrites and massive crystals.

1. Introduction

Les cristaux bien formés présentent un ensemble de facettes caractéristiques, ensemble qui est désigné sous © 1980 International Union of Crystallography